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Critical exponents for lattice animals with fixed 
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C E Soteros and S G Whittington 
Department of Chemistry, University of Toronto, Toronto, Canada M5S 1A l  

Received 20 November 1987 

Abstract. We derive an inequality between the number of trees and the number of lattice 
animals with exactly c cycles, a , , ( c ) ,  for all positive c. I f  we assume that a , , ( c ) -  n-*'A:!, 
n + CO, c fixed, we use this to show that 8, = Bo - c where Bo is the corresponding exponent 
for trees. 

1. Introduction 

Lattice animals are connected subgraphs of a regular lattice. They have received 
considerable attention over the past ten years, partly because they are a useful model 
of excluded volume effects in branched polymer molecules in dilute solution (Lubensky 
and Isaacson 1979). One question of particular interest is the asymptotic behaviour 
of the number ( a , )  of animals with n vertices (weakly) embeddable in a given lattice. 
Klarner (1967) used concatenation arguments to show that 

O <  lim n- '  log a, =su n - '  log a, =log A <Co. (1.1) 
n - n  n 3 

By analogy with related problems one would expect that 

a, - n-8A (1.2) 

and (1.1) then implies that 8 2 0. 

that 
If we write a,(O) for the number of trees with n vertices, Klein (1981) has shown 

O <  n - n  lim n - '  log a,(O) =sup n>O n - '  log a,(O)=log A , < o o .  (1.3) 

Clearly A , S A  and this inequality is probably strict (Gaunt et al 1982). Again the 
expected asymptotic behaviour is 

a,(O) - n-'oA;. (1.4) 

Lubensky and Isaacson (1979) have argued that Bo= 0 and this is supported by 
several numerical studies (see, e.g., Duarte and Ruskin 1981, Gaunt er al 1982). Parisi 
and Sourlas (1981) have related the lattice animal exponent ( e )  in d dimensions to 
the exponent characterising the Yang-Lee edge singularity in d - 2 dimensions. This 
implies that 8 = 1 in two dimensions and 6 = i in three dimensions. 
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In order to relate trees to animals Lubensky and Isaacson (1979) introduced a cycle 
fugacity and argued that the corresponding critical exponent was independent of this 
fugacity. This led to the loose idea that cycles were unimportant in determining the 
critical behaviour of lattice animals. Whittington et a1 (1983) studied the number, 
a,(c), of lattice animals with n vertices and cyclomatic index c. These are referred to 
as c-animals. The cyclomatic index is the number of independent cycles; for instance 
a theta graph has c = 2. They showed that 

lim n log U, ( c )  = log A,, (1.5) 
n-m 

for all c. Assuming that 

a,(c)- n-'CA: (1.6) 

they showed that 

ec 3 eC+] 3 e, - 1 (1.7) 

and presented numerical evidence that 0, = Bo - 1 and 0, = Bo - 2. This, together with 
(1.7), led them to conjecture that 

ec = eo - C. (1.8) 

More recent numerical studies by Wilkinson (1986) and Lam (1987) are all consistent 
with (1.8). 

In this paper we prove (1.8) for the square lattice. We assume the existence of the 
exponent B o .  Otherwise the arguments are rigorous. 

The idea of the proof is to show that cycles can be introduced into a tree at a vertex 
of degree 4 and at certain vertices of degree 3, to give distinct animals with cycles. 
We show that there is a positive value of E such that 'most' (in a sense which will be 
made precise) trees with n vertices have at least En vertices at which this transformation 
can take place. By choosing c of these En vertices and carrying out these transformations 
at c vertices, we obtain an inequality which is essentially 

a n + c ( c )  2 An'a,(O) (1.9) 

a,(c) S 2dnan(c - 1) (1.10) 

for some positive constant A. This, together with the inequality 

derived by Whittington et a1 (1983), gives (1.8). 

2. Proof of results 

We restrict our attention to weak embeddings (i.e. subgraphs) in the square lattice. A 
tree ( T )  of n vertices has vertex set V and edge set E. The vertices have coordinates 
( x i ,  yi), i = 1,2,  , . . , n, and we define the top vertex (bottom vertex) as the vertex having 
maximum (minimum) x coordinate and, in case of ambiguity, the vertex in this subset 
having maximum (minimum) y coordinate. Since the tree is connected, every vertex 
has degree 1, 2, 3 or 4 for n > 1. A vertex is a member of set V,  if it is of degree 4 
and is a member of V,, V, ,  V, or V,  if it is of degree 3 and is not connected to the 
neighbouring vertex in the south, west, north or east direction respectively (see figure 
1). We consider a tree that has at least one vertex which is a member of V ,  , V, or V,. 
We number this vertex U,, and suppose it has coordinates ( x ,  y ) .  
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Figure 1. On the square lattice a vertex of degree greater than two must be of one of the 
five types shown. 

Theorem 1 .  Every tree (with n vertices) containing a vertex uo E VI,  V2 or V, can be 
converted into a 1-animal (with n + 1 vertices) containing a 4-cycle in which uo is the 
bottom vertex of the 4-cycle. The resulting 1-animal can have at most three trees rooted 
at a vertex in V, U V,u V, as precursors. 

Prooj Let U, be the top vertex of the tree, with coordinates (x,, y , ) .  Since uo E V, , V, 
or V, then vo is connected to u1 and U, with coordinates ( x + l , y )  and (x, y +  1) 
respectively. We consider three subcases as follows. 

(i) There is no vertex in the tree with coordinates (x + 1, y + 1) (in this case U ~ E  Wi). 
(ii) There is a vertex U, E V with coordinates (x + 1, y + 1) and either (U, - U,) E E 

(iii) 21, E V but ( ui - U,) @ E and ( U, - u3)  @ E (then uOe W3). 

For the three cases we have three different constructions. 
(i) Add u, at (x+ 1, y + 1) and the edges (U, - U,) and (U, - U,). 
(ii) If (0, - 7.1,) E E, add ( U, - u3) ,  and the vertex U,, with coordinates (x, + 1, y , )  and 

the edge (U, - U,,). If ( U, - U,) E E, add (0, - u 3 ) ,  and the vertex v,,, with coordinates 
(x,, y ,  + 1) and the edge (U, - U,,,). 

(iii) The tree must contain at least one of two vertices having coordinates 
( x + 2 , y +  1) and (x+ l , y + 2 ) .  We call these vertices u4 and u s ,  respectively. In 
addition, at least one of the edges e4 = ( U, - U,) and e5 = ( U, - u s )  must be a member 
of E. u3 is connected to uo through one and only one of e4 and e5.  Delete the edge 
e4 or e5 on this connected path, add the edges ( v i  - U,) and ( u2 - u3)  and the vertex 
0,. = (x, + 1, y , )  and edge (U, - U,,) if e4 is deleted, or the vertex U,,. = (x,, y ,  + 1) and edge 
(U, - U,,,) if e5 is deleted. 

The connected graph resulting from each of these constructions has n + 1 vertices 
and n + 1 edges so that it is a 1-animal. 

Let F be the set of trees such that T E F iff VI( T )  U V2( T )  U V3( T )  is not empty. 
Let FR be the set of rooted trees obtained by rooting each member ( T )  of F at each 
vertex U,E VI( T )  U V2( T )  U V3( T ) .  Let FRh c YR such that the tree T E FR is a member 
of F R ,  iff uO(T)E Wk(T).  

The transformation defined above maps a member of FRh uniquely into a 1-animal 
so that this transformation from FRk is 1-1 and onto the image set of FRi. Hence, 
since k has three possible values, each 1-animal can have at most three precursors in 
the set of rooted trees. 

or ( u 2 - u 3 ) ~  E (then v o ~  W2).  

Note that since T is a tree it is not possible for both ( u1 - U,) E E and ( u2 - u 3 )  E E. 

Let b,(e)  be the number of trees with n vertices, more than En of which are members 
of VI U V2 U V,. Let a,( c) be the number of c-animals with n vertices. From theorem 
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1 we have 

for any E such that En 2 1,  since the tree can be rooted in at least 

(3 
ways. 

Suppose that we consider a tree with n vertices containing at least c vertices in 
V I  U V2 U V, . We can choose c of these vertices and order them lexicographically (i.e. 
first in increasing order of x coordinate and, in case of ambiguity, in increasing order 
o f y  coordinate). By carrying out the above transformation successively at these ordered 
vertices we obtain c-animals having n + c vertices. The resulting c-animal has at most 
3' precursors in the set of trees. I f  the tree has more than En vertices in VI U V, U V, 
the c vertices can be chosen in at least 

ways and 

for . m a c .  
We now proceed to derive a lower bound on b , ( E )  to establish that enough trees 

have sufficiently many vertices in VI U V2 U V, that (2.2) implies (1.9). We accomplish 
this by proving a series of lemmas. 

Lemma 1. If & ( E ,  >) is the number of trees with n vertices containing more than En 
vertices of degree greater than two then 

b f l ( & / 5 ) 3  t n ( & ,  >)/2.  (2.3) 

ProoJ: Suppose that S,,(E, >) is the set of trees with n vertices having more than En 
vertices of degree greater than two. We construct subsets Snm(&, >) such that a tree 
T E & ( E ,  >) is a member of Sflm(&, >) if m is the smallest number such that the number 
of vertices in Vm( T )  is at least as large as the number in Vk(  T ) ,  k = 1 , .  . . , 5 ,  k f m. 
Thus T can be a member of only one subset &,,,(e, >). I S n 2 ( E ,  >))31S, , (~,  >)I2 
ISn4(&, >)I 2 ISn5(&, >)) where we write 1 1 for the cardinality of a set. Hence 

3 

2 I S f l k ( E ,  > ) I  2 ISfl(&, = tn(E, >)/2.  (2.4) 
k = l  

Any T E Snm( E ,  >) is also a member of & ( E ,  >) and hence has at least ne/5 vertices 
in Vm( T ) .  Therefore the number of trees having at least nE/5 vertices in VI U V2 U V, 
is bounded below by X i m l  IS,,k(&, > ) I  and this, together with (2.4), implies (2.3). 

Lemma 2 (Lipson and Whittington 1983). I f  [ , , ( E ,  s) is the number of trees with n 
vertices containing at most En vertices of degree greater than 2 then there exists a 
positive constant A ( & )  such that the limit 

lim n-' log t , , ( ~ ,  s) = log A ( & )  < CO (2.5) 
n-cs  

exists. 
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Lemma 3. A ( & )  is a log concave function of E in [0,1]. 

Proof: By an  argument exactly analogous to that of Lipson and  Whittington (1983) 
leading to their equation (2.21), it is easy to prove that 

f n ( E 1 ,  < ) t , ( E 2 ,  s t Z n + y ( ( E l +  4 / 2 9  (2.6) 
where q is the smallest integer greater than or equal to 4 / ( ~ ,  + E ~ ) .  Taking logarithms, 
dividing by n and taking the limit n +CO with and  e2 fixed we have 

log A ( 8 1 )  + log A ( E * )  s 2 log A ( (  E I  + ~ 2 ) / 2 ) .  (2.7) 
Since A ( & )  is a non-decreasing function of E bounded below (by the growth constant 
for self-avoiding walks) and above (by the growth constant for animals) then (2.7) 
implies that A ( & )  is a log concave function of E in [0,1] (Hardy et a1 1934). 

Lemma 4. log A ( & )  is a continuous function of E in [0, 11. 

Proof: Since log A ( E )  is a non-decreasing concave function of E in [0,1] it is continuous 
in (0, 11 (Hardy et a1 1934). Hence we need only establish continuity at E = 0. To d o  
this we construct an upper bound on t , (  E ,  s ) ,  as follows. We write nk for the number 
of vertices of degree k in a tree. Let U,(&) be the number of trees with n vertices 
having at  most E n  vertices of degree not equal to 2. Then 

& ( E ,  <)< Ufl(4E) (2.8) 

m = n ,  + n3 + n4 = 2 +  2n, + 3 n 4 s  4 ~ n  (2.9) 

since 

provided that 2/n s E si. We can bound u , ( ~ E )  by 

(2.10) 

where T ( m )  is the number of (unlabelled) trees, in a graph theoretic sense, and  g is 
some fixed positive number. The second term in (2.10) is the number of ways of 
distributing the n, = n - m vertices of degree 2 among the m - 1 branches of each tree, 
and  the final term is an upper bound on the number of ways of embedding the branches 
independently in the lattice, derived from the results of Hammersley and  Welsh (1962). 
K is the connective constant of the lattice, given by 

K = lim n - '  log c, (2.11) 
n - 5  

where c, is the number of n-step self-avoiding walks on the lattice. Clearly A (0) = elc. 
Since there exist positive constants B and p (Otter 1948) such that 

T ( m ) <  Bpm (2.12) 

we have, from (2.10) 

provided that E si+ 1/(4n). Then from (2.8) and  (2.13) 

log A ( & )  = lim n- '  log [ , (E,  C )  
R - P X  

(2.13) 

s 4 E  log p - 4 s  log 4E - ( 1  -4E) log ( 1  -4E)+K +gdE (2.14) 
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and 

lim log A ( E )  = K = log A (0) 
F - 0  

establishing continuity at E = 0. 

Lemma 5. There exists 0 such that for all E < 
lim ( t n ( & ,  > ) / a , ( O ) )  = 1. 
n-cc 

(2.15) 

(2.16) 

Proof: Since A ( & )  is continuous in [0, 1 1  and A(0) < A ( l )  (Gaunt et al 1982) there 
exists eo > 0 such that for all E < eo, A ( E )  < A (1). We can write 

tn(% >) /a , (O)  = 1 - f n ( E ,  < ) / a n ( O )  (2.17) 

= 1 -[A(e)/A(l)]" eo'"' (2.18) 

and letting n +cc proves the lemma. 

Lemma 6. There exists an  A>O and an integer N such that for all n > N 

b n ( E )  3 Aan(0)  

for any E s e0/5.  

Proof: (2.19) follows immediately from (2 .3)  and (2.18). 

Theorem 2. If limn+cc[log(an(0)/A:)/log n ]  = -eo exists then 

lim [log(a,(c)/A;l)/log n ]  = -ec 
n-a; 

exists for all c and 

e, = eo - C. 

Proof: It follows from (2.2) and  (2.19) that 

(2.19) 

(2.20) 

(2.21) 

and from (1.10) that 

a , ( c ) s  (2dn)"an(0). (2.22) 

Dividing by A : ,  taking logarithms and dividing by log n in (2.21) and  (2.22) and then 
letting n + a3 with c fixed proves the theorem and in particular gives (2.20). 

3. Discussion 

The proof given in the previous section is specifically for the square lattice. However, 
it can be generalised to work for the d-dimensional hypercubic lattice with relatively 
minor modifications. For lemmas 2-6 the proofs for arbitrary d are almost identical 
to those for d = 2 and  the only serious differences arise in theorem 1 and lemma 1. In 
theorem 1 the sets of vertices corresponding to V,, V, and V, will be sets of vertices 
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(U,) with degree 3 , 4 , .  . . ,2d which have incident on them the two edges 
( x , , x 2 , .  . . , x d ) - ( x I + 1 , x 2 , .  . . , x d )  and ( x , , x 2 , .  . . , x d ) - ( x I , x 2 + 1 , .  . . , x d )  where 
(x, , x 2 ,  , . . , x d )  are the coordinates of U,. In lemma 1 the inequality corresponding 
to (2.3) is 

b f l ( E l k ) Z  ( l / l ) t f l ( & ,  >) ( 3 . 1 )  

where 

and 

I = m a x (  2d j ) (  2 d - 2  ) = d ( 2 d - 1 ) / 3 .  
j 3 3  j - 2  (3.3) 

The proof follows the same lines as that given in 0 2. 
To summarise we have shown that if the critical exponent (e,) for trees exists then 

the corresponding exponent (e,) for c-animals exists and is given by 8, = Bo - c. Apart 
from its relevance to the effect of cyclomatic index on the statistics of lattice animals 
this result is also relevant to recent work by Dickman and Schieve (1984, 1986) on the 
collapse transition of lattice animals. 
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