Critical exponents for lattice animals with fixed cyclomatic index

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 212187
(http://iopscience.iop.org/0305-4470/21/9/031)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:41

Please note that terms and conditions apply.

Critical exponents for lattice animals with fixed cyclomatic index

C E Soteros and S G Whittington
Department of Chemistry, University of Toronto, Toronto, Canada M5S 1A1

Received 20 November 1987

Abstract

We derive an inequality between the number of trees and the number of lattice animals with exactly c cycles, $a_{n}(c)$, for all positive c. If we assume that $a_{n}(c) \sim n^{-\theta} \cdot \lambda_{c}^{n}$, $n \rightarrow \infty, c$ fixed, we use this to show that $\theta_{c}=\theta_{0}-c$ where θ_{0} is the corresponding exponent for trees.

1. Introduction

Lattice animals are connected subgraphs of a regular lattice. They have received considerable attention over the past ten years, partly because they are a useful model of excluded volume effects in branched polymer molecules in dilute solution (Lubensky and Isaacson 1979). One question of particular interest is the asymptotic behaviour of the number (a_{n}) of animals with n vertices (weakly) embeddable in a given lattice. Klarner (1967) used concatenation arguments to show that

$$
\begin{equation*}
0<\lim _{n \rightarrow \infty} n^{-1} \log a_{n}=\sup _{n>0} n^{-1} \log a_{n} \equiv \log \lambda<\infty . \tag{1.1}
\end{equation*}
$$

By analogy with related problems one would expect that

$$
\begin{equation*}
a_{n} \sim n^{-\theta} \lambda^{n} \tag{1.2}
\end{equation*}
$$

and (1.1) then implies that $\theta \geqslant 0$.
If we write $a_{n}(0)$ for the number of trees with n vertices, Klein (1981) has shown that

$$
\begin{equation*}
0<\lim _{n \rightarrow \infty} n^{-1} \log a_{n}(0)=\sup _{n>0} n^{-1} \log a_{n}(0) \equiv \log \lambda_{0}<\infty . \tag{1.3}
\end{equation*}
$$

Clearly $\lambda_{0} \leqslant \lambda$ and this inequality is probably strict (Gaunt et al 1982). Again the expected asymptotic behaviour is

$$
\begin{equation*}
a_{n}(0) \sim n^{-\theta_{0}} \lambda_{0}^{n} . \tag{1.4}
\end{equation*}
$$

Lubensky and Isaacson (1979) have argued that $\theta_{0}=\theta$ and this is supported by several numerical studies (see, e.g., Duarte and Ruskin 1981, Gaunt et al 1982). Parisi and Sourlas (1981) have related the lattice animal exponent (θ) in d dimensions to the exponent characterising the Yang-Lee edge singularity in $d-2$ dimensions. This implies that $\theta=1$ in two dimensions and $\theta=\frac{3}{2}$ in three dimensions.

In order to relate trees to animals Lubensky and Isaacson (1979) introduced a cycle fugacity and argued that the corresponding critical exponent was independent of this fugacity. This led to the loose idea that cycles were unimportant in determining the critical behaviour of lattice animals. Whittington et al (1983) studied the number, $a_{n}(c)$, of lattice animals with n vertices and cyclomatic index c. These are referred to as c-animals. The cyclomatic index is the number of independent cycles; for instance a theta graph has $c=2$. They showed that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log a_{n}(c)=\log \lambda_{0} \tag{1.5}
\end{equation*}
$$

for all c. Assuming that

$$
\begin{equation*}
a_{n}(c) \sim n^{-\theta_{\cdot}} \cdot \lambda_{0}^{n} \tag{1.6}
\end{equation*}
$$

they showed that

$$
\begin{equation*}
\theta_{c} \geqslant \theta_{c+1} \geqslant \theta_{c}-1 \tag{1.7}
\end{equation*}
$$

and presented numerical evidence that $\theta_{1}=\theta_{0}-1$ and $\theta_{2}=\theta_{0}-2$. This, together with (1.7), led them to conjecture that

$$
\begin{equation*}
\theta_{c}=\theta_{0}-c \tag{1.8}
\end{equation*}
$$

More recent numerical studies by Wilkinson (1986) and Lam (1987) are all consistent with (1.8).

In this paper we prove (1.8) for the square lattice. We assume the existence of the exponent θ_{0}. Otherwise the arguments are rigorous.

The idea of the proof is to show that cycles can be introduced into a tree at a vertex of degree 4 and at certain vertices of degree 3 , to give distinct animals with cycles. We show that there is a positive value of ε such that 'most' (in a sense which will be made precise) trees with n vertices have at least εn vertices at which this transformation can take place. By choosing c of these εn vertices and carrying out these transformations at c vertices, we obtain an inequality which is essentially

$$
\begin{equation*}
a_{n+c}(c) \geqslant A n^{c} a_{n}(0) \tag{1.9}
\end{equation*}
$$

for some positive constant A. This, together with the inequality

$$
\begin{equation*}
a_{n}(c) \leqslant 2 d n a_{n}(c-1) \tag{1.10}
\end{equation*}
$$

derived by Whittington et al (1983), gives (1.8).

2. Proof of results

We restrict our attention to weak embeddings (i.e. subgraphs) in the square lattice. A tree (T) of n vertices has vertex set V and edge set E. The vertices have coordinates (x_{i}, y_{i}), $i=1,2, \ldots, n$, and we define the top vertex (bottom vertex) as the vertex having maximum (minimum) x coordinate and, in case of ambiguity, the vertex in this subset having maximum (minimum) y coordinate. Since the tree is connected, every vertex has degree $1,2,3$ or 4 for $n>1$. A vertex is a member of set V_{1} if it is of degree 4 and is a member of V_{2}, V_{3}, V_{4} or V_{5} if it is of degree 3 and is not connected to the neighbouring vertex in the south, west, north or east direction respectively (see figure 1). We consider a tree that has at least one vertex which is a member of V_{1}, V_{2} or V_{3}. We number this vertex v_{0} and suppose it has coordinates (x, y).

Figure 1. On the square lattice a vertex of degree greater than two must be of one of the five types shown.

Theorem 1. Every tree (with n vertices) containing a vertex $v_{0} \in V_{1}, V_{2}$ or V_{3} can be converted into a 1 -animal (with $n+1$ vertices) containing a 4 -cycle in which v_{0} is the bottom vertex of the 4 -cycle. The resulting 1 -animal can have at most three trees rooted at a vertex in $V_{1} \cup V_{2} \cup V_{3}$ as precursors.

Proof. Let v_{1} be the top vertex of the tree, with coordinates $\left(x_{t}, y_{t}\right)$. Since $v_{0} \in V_{1}, V_{2}$ or V_{3} then v_{0} is connected to v_{1} and v_{2} with coordinates $(x+1, y)$ and $(x, y+1)$ respectively. We consider three subcases as follows.
(i) There is no vertex in the tree with coordinates $(x+1, y+1)$ (in this case $\left.v_{0} \in W_{1}\right)$.
(ii) There is a vertex $v_{3} \in V$ with coordinates $(x+1, y+1)$ and either $\left(v_{1}-v_{3}\right) \in E$ or $\left(v_{2}-v_{3}\right) \in E$ (then $v_{0} \in W_{2}$).
(iii) $v_{3} \in V$ but $\left(v_{1}-v_{3}\right) \notin E$ and $\left(v_{2}-v_{3}\right) \notin E$ (then $\left.v_{0} \in W_{3}\right)$.

Note that since T is a tree it is not possible for both $\left(v_{1}-v_{3}\right) \in E$ and $\left(v_{2}-v_{3}\right) \in E$.
For the three cases we have three different constructions.
(i) Add v_{3} at $(x+1, y+1)$ and the edges $\left(v_{1}-v_{3}\right)$ and $\left(v_{2}-v_{3}\right)$.
(ii) If $\left(v_{1}-v_{3}\right) \in E$, add $\left(v_{2}-v_{3}\right)$, and the vertex $v_{t^{\prime}}$ with coordinates $\left(x_{t}+1, y_{t}\right)$ and the edge $\left(v_{t}-v_{t^{\prime}}\right)$. If $\left(v_{2}-v_{3}\right) \in E$, add ($v_{1}-v_{3}$), and the vertex $v_{t^{\prime \prime}}$ with coordinates $\left(x_{t}, y_{t}+1\right)$ and the edge $\left(v_{t}-v_{t^{\prime}}\right)$.
(iii) The tree must contain at least one of two vertices having coordinates $(x+2, y+1)$ and $(x+1, y+2)$. We call these vertices v_{4} and v_{5}, respectively. In addition, at least one of the edges $e_{4}=\left(v_{3}-v_{4}\right)$ and $e_{5}=\left(v_{3}-v_{5}\right)$ must be a member of $E . v_{3}$ is connected to v_{0} through one and only one of e_{4} and e_{5}. Delete the edge e_{4} or e_{5} on this connected path, add the edges $\left(v_{1}-v_{3}\right)$ and $\left(v_{2}-v_{3}\right)$ and the vertex $v_{t^{\prime}}=\left(x_{t}+1, y_{t}\right)$ and edge $\left(v_{t}-v_{t^{\prime}}\right)$ if e_{4} is deleted, or the vertex $v_{t^{\prime \prime}}=\left(x_{t}, y_{t}+1\right)$ and edge $\left(v_{t}-v_{t^{\prime}}\right)$ if e_{5} is deleted.

The connected graph resulting from each of these constructions has $n+1$ vertices and $n+1$ edges so that it is a 1 -animal.

Let \mathscr{T} be the set of trees such that $T \in \mathscr{T}$ iff $V_{1}(T) \cup V_{2}(T) \cup V_{3}(T)$ is not empty. Let \mathscr{T}_{R} be the set of rooted trees obtained by rooting each member (T) of \mathscr{T} at each vertex $v_{0} \in V_{1}(T) \cup V_{2}(T) \cup V_{3}(T)$. Let $\mathscr{T}_{R_{k}} \subset \mathscr{T}_{R}$ such that the tree $T \in \mathscr{T}_{R}$ is a member of $\mathscr{T}_{R_{k}}$ iff $v_{0}(T) \in W_{k}(T)$.

The transformation defined above maps a member of $\mathscr{T}_{R_{k}}$ uniquely into a 1 -animal so that this transformation from $\mathscr{T}_{R_{k}}$ is $1-1$ and onto the image set of $\mathscr{T}_{R_{k}}$. Hence, since k has three possible values, each 1-animal can have at most three precursors in the set of rooted trees.

Let $b_{n}(\varepsilon)$ be the number of trees with n vertices, more than εn of which are members of $V_{1} \cup V_{2} \cup V_{3}$. Let $a_{n}(c)$ be the number of c-animals with n vertices. From theorem

1 we have

$$
\begin{equation*}
a_{n+1}(1) \geqslant\binom{\varepsilon n}{1} b_{n}(\varepsilon) / 3 \tag{2.1}
\end{equation*}
$$

for any ε such that $\varepsilon n \geqslant 1$, since the tree can be rooted in at least

$$
\binom{\varepsilon n}{1}
$$

ways.
Suppose that we consider a tree with n vertices containing at least c vertices in $V_{1} \cup V_{2} \cup V_{3}$. We can choose c of these vertices and order them lexicographically (i.e. first in increasing order of x coordinate and, in case of ambiguity, in increasing order of y coordinate). By carrying out the above transformation successively at these ordered vertices we obtain c-animals having $n+c$ vertices. The resulting c-animal has at most 3^{c} precursors in the set of trees. If the tree has more than εn vertices in $V_{1} \cup V_{2} \cup V_{3}$ the c vertices can be chosen in at least

$$
\binom{\varepsilon n}{c}
$$

ways and

$$
\begin{equation*}
a_{n+c}(c) \geqslant\binom{\varepsilon n}{c} b_{n}(\varepsilon) / 3^{c} \tag{2.2}
\end{equation*}
$$

for $\varepsilon n \geqslant c$.
We now proceed to derive a lower bound on $b_{n}(\varepsilon)$ to establish that enough trees have sufficiently many vertices in $V_{1} \cup V_{2} \cup V_{3}$ that (2.2) implies (1.9). We accomplish this by proving a series of lemmas.

Lemma 1. If $t_{n}(\varepsilon,>)$ is the number of trees with n vertices containing more than εn vertices of degree greater than two then

$$
\begin{equation*}
b_{n}(\varepsilon / 5) \geqslant t_{n}(\varepsilon,>) / 2 \tag{2.3}
\end{equation*}
$$

Proof. Suppose that $S_{n}(\varepsilon,>)$ is the set of trees with n vertices having more than εn vertices of degree greater than two. We construct subsets $S_{n m}(\varepsilon,>)$ such that a tree $T \in S_{n}(\varepsilon,>)$ is a member of $S_{n m}(\varepsilon,>)$ if m is the smallest number such that the number of vertices in $V_{m}(T)$ is at least as large as the number in $V_{k}(T), k=1, \ldots, 5, k \neq m$. Thus T can be a member of only one subset $S_{n m}(\varepsilon,>)$. $\left|S_{n 2}(\varepsilon,>)\right| \geqslant\left|S_{n 3}(\varepsilon,>)\right| \geqslant$ $\left|S_{n 4}(\varepsilon,>)\right| \geqslant\left|S_{n 5}(\varepsilon,>)\right|$ where we write $|\cdot|$ for the cardinality of a set. Hence

$$
\begin{equation*}
\sum_{k=1}^{3}\left|S_{n k}(\varepsilon,>)\right| \geqslant\left|S_{n}(\varepsilon,>)\right| / 2=t_{n}(\varepsilon,>) / 2 . \tag{2.4}
\end{equation*}
$$

Any $T \in S_{n m}(\varepsilon,>)$ is also a member of $S_{n}(\varepsilon,>)$ and hence has at least $n \varepsilon / 5$ vertices in $V_{m}(T)$. Therefore the number of trees having at least $n \varepsilon / 5$ vertices in $V_{1} \cup V_{2} \cup V_{3}$ is bounded below by $\Sigma_{k=1}^{3}\left|S_{n k}(\varepsilon,>)\right|$ and this, together with (2.4), implies (2.3).

Lemma 2 (Lipson and Whittington 1983). If $t_{n}(\varepsilon, \leqslant)$ is the number of trees with n vertices containing at most εn vertices of degree greater than 2 then there exists a positive constant $\lambda(\varepsilon)$ such that the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log t_{n}(\varepsilon, \leqslant) \equiv \log \lambda(\varepsilon)<\infty \tag{2.5}
\end{equation*}
$$

exists.

Lemma 3. $\lambda(\varepsilon)$ is a \log concave function of ε in $[0,1]$.
Proof. By an argument exactly analogous to that of Lipson and Whittington (1983) leading to their equation (2.21), it is easy to prove that

$$
\begin{equation*}
t_{n}\left(\varepsilon_{1}, \leqslant\right) t_{n}\left(\varepsilon_{2}, \leqslant\right) \leqslant t_{2 n+q}\left(\left(\varepsilon_{1}+\varepsilon_{2}\right) / 2, \leqslant\right) \tag{2.6}
\end{equation*}
$$

where q is the smallest integer greater than or equal to $4 /\left(\varepsilon_{1}+\varepsilon_{2}\right)$. Taking logarithms, dividing by n and taking the limit $n \rightarrow \infty$ with ε_{1} and ε_{2} fixed we have

$$
\begin{equation*}
\log \lambda\left(\varepsilon_{1}\right)+\log \lambda\left(\varepsilon_{2}\right) \leqslant 2 \log \lambda\left(\left(\varepsilon_{1}+\varepsilon_{2}\right) / 2\right) \tag{2.7}
\end{equation*}
$$

Since $\lambda(\varepsilon)$ is a non-decreasing function of ε bounded below (by the growth constant for self-avoiding walks) and above (by the growth constant for animals) then (2.7) implies that $\lambda(\varepsilon)$ is a \log concave function of ε in $[0,1]$ (Hardy et al 1934).

Lemma 4. $\log \lambda(\varepsilon)$ is a continuous function of ε in $[0,1]$.
Proof. Since $\log \lambda(\varepsilon)$ is a non-decreasing concave function of ε in $[0,1]$ it is continuous in (0,1] (Hardy et al 1934). Hence we need only establish continuity at $\varepsilon=0$. To do this we construct an upper bound on $t_{n}(\varepsilon, \leqslant)$, as follows. We write n_{k} for the number of vertices of degree k in a tree. Let $u_{n}(\varepsilon)$ be the number of trees with n vertices having at most εn vertices of degree not equal to 2 . Then

$$
\begin{equation*}
t_{n}(\varepsilon, \leqslant) \leqslant u_{n}(4 \varepsilon) \tag{2.8}
\end{equation*}
$$

since

$$
\begin{equation*}
m=n_{1}+n_{3}+n_{4}=2+2 n_{3}+3 n_{4} \leqslant 4 \varepsilon n \tag{2.9}
\end{equation*}
$$

provided that $2 / n \leqslant \varepsilon \leqslant \frac{1}{4}$. We can bound $u_{n}(4 \varepsilon)$ by

$$
\begin{equation*}
u_{n}(4 \varepsilon) \leqslant \sum_{m \leqslant 4 \varepsilon n} T(m)\binom{n-2}{m-2} \mathrm{e}^{n(\kappa+g \sqrt{ } \varepsilon)} \tag{2.10}
\end{equation*}
$$

where $T(m)$ is the number of (unlabelled) trees, in a graph theoretic sense, and g is some fixed positive number. The second term in (2.10) is the number of ways of distributing the $n_{2}=n-m$ vertices of degree 2 among the $m-1$ branches of each tree, and the final term is an upper bound on the number of ways of embedding the branches independently in the lattice, derived from the results of Hammersley and Welsh (1962). κ is the connective constant of the lattice, given by

$$
\begin{equation*}
\kappa=\lim _{n \rightarrow \infty} n^{-1} \log c_{n} \tag{2.11}
\end{equation*}
$$

where c_{n} is the number of n-step self-avoiding walks on the lattice. Clearly $\lambda(0)=\mathrm{e}^{\kappa}$. Since there exist positive constants B and β (Otter 1948) such that

$$
\begin{equation*}
T(m) \leqslant B \beta^{m} \tag{2.12}
\end{equation*}
$$

we have, from (2.10)

$$
\begin{equation*}
u_{n}(4 \varepsilon) \leqslant 4 \varepsilon n B \beta^{4 \varepsilon n}\binom{n-2}{4 \varepsilon n-2} \mathrm{e}^{n\left(\kappa+g V^{\prime}\right)} \tag{2.13}
\end{equation*}
$$

provided that $\varepsilon \leqslant \frac{1}{8}+1 /(4 n)$. Then from (2.8) and (2.13)

$$
\begin{align*}
\log \lambda(\varepsilon) & =\lim _{n \rightarrow \infty} n^{-1} \log t_{n}(\varepsilon, \leqslant) \\
& \leqslant 4 \varepsilon \log \beta-4 \varepsilon \log 4 \varepsilon-(1-4 \varepsilon) \log (1-4 \varepsilon)+\kappa+g \sqrt{ } \varepsilon \tag{2.14}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \log \lambda(\varepsilon)=\kappa=\log \lambda(0) \tag{2.15}
\end{equation*}
$$

establishing continuity at $\varepsilon=0$.
Lemma 5. There exists $\varepsilon_{0}>0$ such that for all $\varepsilon<\varepsilon_{0}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(t_{n}(\varepsilon,>) / a_{n}(0)\right)=1 \tag{2.16}
\end{equation*}
$$

Proof. Since $\lambda(\varepsilon)$ is continuous in [0,1] and $\lambda(0)<\lambda(1)$ (Gaunt et al 1982) there exists $\varepsilon_{0}>0$ such that for all $\varepsilon<\varepsilon_{0}, \lambda(\varepsilon)<\lambda(1)$. We can write

$$
\begin{align*}
t_{n}(\varepsilon,>) / a_{n}(0) & =1-t_{n}(\varepsilon, \leqslant) / a_{n}(0) \tag{2.17}\\
& =1-[\lambda(\varepsilon) / \lambda(1)]^{n} \mathrm{e}^{\mathrm{O}(n)} \tag{2.18}
\end{align*}
$$

and letting $n \rightarrow \infty$ proves the lemma.
Lemma 6. There exists an $A>0$ and an integer N such that for all $n>N$

$$
\begin{equation*}
b_{n}(\varepsilon) \geqslant A a_{n}(0) \tag{2.19}
\end{equation*}
$$

for any $\varepsilon \leqslant \varepsilon_{0} / 5$.
Proof. (2.19) follows immediately from (2.3) and (2.18).
Theorem 2. If $\lim _{n \rightarrow \infty}\left[\log \left(a_{n}(0) / \lambda_{0}^{n}\right) / \log n\right]=-\theta_{0}$ exists then

$$
\lim _{n \rightarrow \infty}\left[\log \left(a_{n}(c) / \lambda_{0}^{n}\right) / \log n\right]=-\theta_{c}
$$

exists for all c and

$$
\begin{equation*}
\theta_{c}=\theta_{0}-c . \tag{2.20}
\end{equation*}
$$

Proof. It follows from (2.2) and (2.19) that

$$
\begin{equation*}
a_{n+c}(c) \geqslant A\binom{\varepsilon n}{c} a_{n}(0) / 3^{c} \tag{2.21}
\end{equation*}
$$

and from (1.10) that

$$
\begin{equation*}
a_{n}(c) \leqslant(2 d n)^{c} a_{n}(0) . \tag{2.22}
\end{equation*}
$$

Dividing by λ_{0}^{n}, taking logarithms and dividing by $\log n$ in (2.21) and (2.22) and then letting $n \rightarrow \infty$ with c fixed proves the theorem and in particular gives (2.20).

3. Discussion

The proof given in the previous section is specifically for the square lattice. However, it can be generalised to work for the d-dimensional hypercubic lattice with relatively minor modifications. For lemmas 2-6 the proofs for arbitrary d are almost identical to those for $d=2$ and the only serious differences arise in theorem 1 and lemma 1 . In theorem 1 the sets of vertices corresponding to V_{1}, V_{2} and V_{3} will be sets of vertices
(v_{0}) with degree $3,4, \ldots, 2 d$ which have incident on them the two edges $\left(x_{1}, x_{2}, \ldots, x_{d}\right)-\left(x_{1}+1, x_{2}, \ldots, x_{d}\right)$ and $\left(x_{1}, x_{2}, \ldots, x_{d}\right)-\left(x_{1}, x_{2}+1, \ldots, x_{d}\right)$ where $\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ are the coordinates of v_{0}. In lemma 1 the inequality corresponding to (2.3) is

$$
\begin{equation*}
b_{n}(\varepsilon / k) \geqslant(1 / l) t_{n}(\varepsilon,>) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\sum_{j=3}^{2 d}\binom{2 d}{j}=2^{2 d}-2 d^{2}-d-1 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
l=\max _{j \geqslant 3}\binom{2 d}{j}\binom{2 d-2}{j-2}^{-1}=d(2 d-1) / 3 \tag{3.3}
\end{equation*}
$$

The proof follows the same lines as that given in $\S 2$.
To summarise we have shown that if the critical exponent $\left(\theta_{0}\right)$ for trees exists then the corresponding exponent $\left(\theta_{c}\right)$ for c-animals exists and is given by $\theta_{c}=\theta_{0}-c$. Apart from its relevance to the effect of cyclomatic index on the statistics of lattice animals this result is also relevant to recent work by Dickman and Schieve $(1984,1986)$ on the collapse transition of lattice animals.

Acknowledgments

The authors wish to acknowledge helpful conversations with D S Gaunt and Neal Madras. This work was financially supported by NSERC of Canada.

References

Dickman R and Schieve W C 1984 J. Physique 451727
--1986 J. Stat. Phys. 44465
Duarte J A M S and Ruskin H J 1981 J. Physique 43531
Gaunt D S, Sykes M F, Torrie G and Whittington S G 1982 J. Phys. A: Math. Gen. 153209
Hammersley J M and Welsh D J A 1962 Q. J. Math. 13108
Hardy G H, Littlewood J E and Pólya G 1934 Inequalities (Cambridge: Cambridge University Press) ch 3
Klarner D A 1967 Can. J. Math. 19851
Klein D J 1981 J. Chem. Phys. 755186
Lam P M 1987 Phys. Rev. A 35349
Lipson J E G and Whittington S G 1983 J. Phys. A: Math. Gen. 163119
Lubensky T C and Isaacson J 1979 Phys. Rev. A 202130
Otter R 1948 Ann. Math. 49583
Parisi G and Sourlas N 1981 Phys. Rev. Lett. 46871
Whittington S G, Torrie G M and Gaunt D S 1983 J. Phys. A: Math. Gen. 161695
Wilkinson M K 1986 J. Phys. A: Math. Gen. 193431

